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New therapeutic targets are becoming increasingly popular for the treatment of a wide array of
neurodegenerative diseases, the preferred targets being those that prevent neuronal apoptosis at
multiple levels or those that can cross the blood-brain barrier in order to replace degenerated cells and
promote neuronal regeneration. One such rapidly emerging neuroprotective agents is taurine. Taurine is
a ubiquitous amino acid that satisfies most criteria to be classified as a neurotransmitter. Because of
a wide spectrum of effects that taurine can induce on intrinsic apoptosis pathways, such as modulating
mitochondrial pore permeability, attenuating endoplasmic reticulum stress, maintaining calcium
homeostasis, and downregulating the activities of a range of pro-apoptotic proteins, including calpain
and caspases, while upregulating a variety of anti-apoptotic proteins involved in glutamate and hypoxia-
induced toxicity, taurine is being extensively studied and successfully applied for the treatment of
neurodegenerative diseases. Another potential molecule being researched for combating neurodegen-
erative diseases is granulocyte colony-stimulating factor (G-CSF), which originates from the cytokine
family of growth factors. G-CSF has gained widespread attention because of its ability to cross the blood-
brain barrier, the presence of its receptors in the central nervous system, anti-apoptotic functions, and its
proliferative role in the restoration of tissue survival via neurogenesis. In this review from the available
current literature, the modes of action of taurine and G-CSF are discussed. Further mechanistic studies
are warranted in order to fully realize the potential of these two molecules.

Copyright � 2011, Taipei Medical University. Published by Elsevier Taiwan LLC. All rights reserved.
1. Introduction

Taurine (2-amino-ethanesulfonic acid) is one of the most abundant
amino acids in the human body. The biosynthesis of taurine is
believed to be incomplete in astrocytes and neurons, but metabolic
cooperation between these two cell types is essential for the
completion of its metabolic pathway.1 Taurine is ubiquitously
distributed, but is enriched in electrically excitable tissues such as
the brain, retina, heart, and skeletal muscles.2 The regulatory role of
taurine has been implicated in a plethora of functions such as an
anti-inflammatory molecule,3,4 osmolyte, anti-oxidant,2,5,6 trophic
factor,7,8 and as a neuromodulator.9e11 Clinically, taurine has been
used with varying degrees of success for the treatment of a variety
of conditions, including, but not limited to, cardiovascular diseases,
hypercholesterolemia, epilepsy, macular degeneration, Alzheimer’s
disease, hepatic disorders, alcoholism, cystic fibrosis, and, most
recently in in vitro fertilization.12,13
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Although taurine is not fully recognized as a neurotransmitter, it
satisfies most of the criteria necessary to be classified as one.
Co-localization of the taurine-synthesizing enzyme, cysteine sul-
finic acid decarboxylase (CSAD), and taurine on the presynaptic
side of a nerve has been documented, particularly in association
with synaptic vesicles.14e16 Interestingly, taurine is the only free
amino acid that is highly enriched in the synaptic vesicles in
comparison with glutamic acid, glutamine, gamma-amino butyric
acid (GABA), and aspartic acid, which are also available in the
synaptic vesicle fractions.17 Taurine release is attributed to
depolarization-evoked, calcium-dependent pathways and sodium-
dependent, calcium-independent pathways under very high
potassium concentrations.18,19 About two decades ago, we
demonstrated the presence of unique taurine receptors, and addi-
tional studies have reported the kinetic properties of highly specific
taurine receptors that are neither agonists nor antagonists of
structurally related amino acids such as glutamate, GABA, or
glycine-activated taurine receptors.20 Recently, an independent
report further strengthened our findings that a specific recognition
site exists that is used exclusively by taurine.21 Taurine is known for
its ability to neuromodularly inhibit postsynaptic taurine receptors
and act as an indirect agonist of GABAA and glycine receptors,
thereby increasing the duration of chloride channel conductance.22
by Elsevier Taiwan LLC. All rights reserved.

mailto:jwu@fau.edu
www.sciencedirect.com/science/journal/18783317
http://www.jecm-online.com
http://dx.doi.org/10.1016/j.jecm.2011.11.001
http://dx.doi.org/10.1016/j.jecm.2011.11.001
http://dx.doi.org/10.1016/j.jecm.2011.11.001


C. Buddhala et al.2
Apart from this, the presence of a sodium-dependent taurine
transporter (TauT) has been confirmed, and TauT knockouts
demonstrate retinal degeneration, reduced olfactory sensitivity, and
the manifestation of clinically important age-dependent dis-
eases.23e25 It is widely accepted that a biochemical mechanism is
required to clear a neurotransmitter from the synaptic cleft after
neurotransmission in order to maintain levels below toxicity. For
taurine, plasma membrane transporters that are involved in the
uptake of taurine from different brain regions, such as the cerebellar
regions, the hypothalamus, and neuroglia, have been reported.26e28

Although taurine meets the above mentioned criteria, it has been
suggested that the presence of a vesicular taurine transporter and
the process of vesicular membrane uptake of newly synthesized
taurine to be loaded into taurinergic synaptic vesicles clearly defines
taurine as a neurotransmitter and, hence, the acceptance of the
theory of a taurinergic phenotype. No such evidence supporting the
presence of a vesicular taurine transporter or the vesicular uptake of
taurine has been documented. In fact, it has been confirmed that
aspartate, taurine, and proline are not taken up by any synaptic
vesicle, unlike similar amino acids such as glutamate, GABA, and
glycine.29 More specific studies are required to examine the
proposed putative role of taurine in the central nervous system
(CNS). So far, we have examined pertinent information related to the
ways in which taurine exerts its neuroprotective effects, and these
findings are presented in this review.

Both regenerative medicine and tissue engineering have great
potential in clinical medicine because they can completely replace
damaged tissue and promote the proliferation and differentiation
of terminal cells that cannot otherwise be revived. The cells of the
nervous systemwere once thought to be incapable of regeneration.
However, with the success of therapeutic strategies involving the
intervention of potent growth factors or cytokines, new cells can
be propagated from progenitor cells. For neurons, growth factors
such as granulocyte colony-stimulating factor (G-CSF), stromal
cell-derived factor-1 (SDF-1), brain-derived neurotrophic factor
(BDNF), and glial-derived neurotrophic factor (GDNF) have become
increasingly popular for the treatment of a wide spectrum of
neurological diseases, including Parkinson’s disease, Huntington’s
disease, neuropathic pain, stroke, etc.30e32 Newer reports suggest
that G-CSF plays a role in memory impairment in senescence-
accelerated mice.33 G-CSF has been approved by the Food and
Drug Administration for clinical use in patients with neutropenia
and cancer patients receiving bone marrow transplant, in addition
to being used as a novel drug for treating stroke patients.34 G-CSF
and its receptors are widely expressed in the neurons of the CNS
and,more importantly, in adult neural stem cells.35 Interestingly, G-
CSF is able to steadily pass through the blood-brain barrier in intact
rats, as demonstrated by a study that utilized G-CSF-iodine dye.36

G-CSF protects against a number of neurological diseases, such as
Parkinson’s disease,32 Huntington’s disease,37 and cerebral
ischemia.38 G-CSF stimulates the neural progenitor response in vivo
and markedly improves long-term behavioral outcomes after
cortical ischemia.31 Peripheral infusion of G-CSF enhances the
recruitment of progenitor cells from the lateral ventricle wall into
ischemic areas of the neocortex in rats.31 In this review, the
molecular mechanisms by which G-CSF contributes to neuro-
protection will be discussed.

2. Mechanisms of action of taurine in neuroprotection

2.1. Neuromodulatory role of taurine in the maintenance of
intracellular calcium homeostasis

Although normal calcium signaling is crucial for normal physiolog-
ical functions, calcium dyshomeostasis is a major event in the
pathophysiology of a plethora of neurological diseases, including
Alzheimer’s disease, cerebral ischemia, Huntington’s disease,
etc.39e41 Cells are endowed with calcium-permeable membrane
receptors and channels that are voltage- or ligand-gated, or lodged
with ATP-driven pumps such as Naþ/Ca2þ exchangers and plasma
membrane Ca2þ ATPase, which collectively maintain low levels of
intracellular calcium. Excessive activation of glutamate receptors is
known to cause a heavy influx and accumulation of calcium inside
the cell and is considered as one of the routes that ultimately results
in neuronal death. This is mediated by excessive glutamate release
because failure to re-uptake calcium by neurons and astroglia has
been linked to CNS insults such as traumatic brain injury and Par-
kinson’s disease, to name a couple.42 We and other researchers have
shown that taurine exerts its protective effects on neurons by
effectively regulating intracellular calcium levels. It was initially
shown that taurine protects against glutamate-induced neuronal
damage by inhibiting the reverse mode of Naþ-Ca2þ exchangers.9e11

Further studies have indicated that the protective effects of taurine
are also facilitated through L-, P/Q-, and N-type voltage-gated
calcium channels and N-Methyl-D-aspartic acid (NMDA) receptors.43

Taurine is also implicated in the inhibition of glutamate-induced
release of calcium from internal pools.44

2.2. Prevention of glutamate-induced apoptosis by taurine

Glutamatergic neurotransmission is at center stage in neuronal
development, differentiation, migration, survival, learning, and
memory formation.45,46 However, a high concentration of gluta-
mate is associated with the clinical characteristics of various
diseases, including stroke, brain trauma, Parkinson’s disease,
etc.42,47We have reported that taurine prevents glutamate-induced
activation of calpain and caspase-9 in rat primary neuronal
cultures.48 In addition, pre-incubation with taurine prior to gluta-
mate treatment markedly reduced the number of apoptotic cells, as
indicated by Hoechst staining, lowered the Bax/Bcl-2 ratio, and
attenuated intracellular Ca2þ levels.9,10,48 A gerbil model of tran-
sient focal cerebral ischemia designed to detect alterations in
amino acids revealed significant elevations of GABA and taurine,
perhaps to combat the surge in postischemic glutamate.49e51

2.3. Taurine downregulates key players in the intrinsic
apoptosis pathway

Taurine is a strong modulator of apoptosis and is widely known to
prevent elevated levels of caspases, calpains, and pro-apoptotic
proteins such as Bad, Bax, and Bim. Taurine has been reported to
significantly reduce apoptotic death by downregulating the activ-
ities of caspase-3 and intracellular calcium.52,53 Taurine also
represses ischemia-induced caspase-8 and caspase-9 expression in
mouse hypothalamic nuclei.54 Not only does taurine exercise its
anti-apoptotic effects by inhibiting the activation of caspases, but it
has also been shown to synergistically upregulate calpastatin while
downregulating calpain in a model of focal cerebral ischemia.55 A
taurine-conjugated form of tauroursodeoxycholic acid (TUDCA) has
been shown to be more beneficial than taurine for cell protection.
TUDCA reduces the apoptotic threshold induced by glutamate in rat
cortical neurons by causing phosphorylation and translocation of
Bad from themitochondria to the cytosol, which is the primary step
in inactivating the release of cytochrome c from the mitochondria
and triggering the activation of the caspase cascade. TUDCA also
appears to modulate, in part, the activation of the PI3 K-dependent
Bad signaling pathway.56 This also appears to be true in an Alz-
heimer’s disease model of amyloid-beta-induced pathogenesis.57

TUDCA has been successfully applied to combat apoptosis-
induced Parkinson’s and Huntington’s disease models.58,59
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The cytoprotective role of taurine has been extended to
preserving the integrity of mitochondrial pore permeability.
Mitochondrial dysfunctions have deleterious consequences on
neurons via the increased production of reactive oxygen species
(ROS), ATP depletion, and the activation of cell death processes.
Based on the current literature, it is apparent that taurine protects
against hypoxia-induced apoptosis by preventing mitochondrial
dysfunction.60 Calcium overload and ionic imbalances in neurons
induce mitochondria to produce free radicals.61,62 Elevated levels
of ROS is a hallmark of neurodegenerative diseases, especially
Parkinson’s disease.63 Both taurine and TUDCA have been impli-
cated in the significant inhibition of mitochondrial membrane
alterations and antagonizing glutamate- and chemical hypoxia-
induced calcium overload.64e67 Direct evidence supporting
taurine’s ability to block mitochondrion-mediated cell pathways
has been published.68 Disruption of the mitochondrial respiration
chain leads to cellular swelling followed by osmolyte efflux, as
shown by the pathology of stroke.69e71 Taurine is known to
enhance cell volume regulation when neurons are swollen under
extreme pathological conditions.72 It has also been shown that
taurine efficiently reduces cellular swelling following exposure to
oxygen-glucose deprivation and reoxygenation-induced damage in
rat brain cortical slices.73

When misfolded or unfolded proteins queue up in the endo-
plasmic reticulum (ER), the unfolded protein response (UPR) is
generated, which then stalls protein synthesis until the proper fold-
enhancing molecules are gathered. If the cell is unable to take the
quanta of mis- or unfolded proteins, then UPR triggers the caspase-
12-mediated apoptotic pathway, which operates exclusively in the
ER.74 UPR is mediated by ER transmembrane receptor-activating
transcription factor 6 (ATF6), inositol-requiring kinase 1 (IRE1),
Figure 1 Summary schematic depicting the mode of action of taurine in neuroprotection. Th
can be summarized as follows: (1) activation of ionotropic taurine receptors (iTauR) and/or a
of sodium/calcium exchangers; (3) inhibition of voltage-gated calcium channels (VGCC) by t
in the intracellular free-calcium concentration; (5) inhibition of the cleavage of Bcl-2 and B
leading to the inhibition of apoptosis; (7) activation of mTauR, which is negatively coupled t
a decrease in IP3 production; (8) decreased IP3 level inhibits the release of calcium from
inhibition of apoptosis.
and double-stranded RNA-activated protein kinase 1 (PKR)-like
endoplasmic reticulum kinase (PERK). ER stress is known to be
manifested in a variety of brain diseases like Alzheimer’s disease,
Huntington’s chorea, Parkinson’s disease, and amyotrophic lateral
sclerosis.75,76 It is reasonable to believe that cross-talk exists
between mitochondria and the ER via the caspase cascade and
aberrant calcium signaling. In fact, the synergistic actions of mito-
chondrial dysfunction and ER stress are both responsible for the
pathophysiology of variety of diseases.77,78 Our recently published
data indicate that taurine protects against glutamate-induced
excitotoxicity in primary cortical neurons and hypoxia-induced
toxicity in PC12 cells by downregulating the expression of CHOP,
GRP78, Bim, and caspase-12, which are the key proteins related to
ER stress.79,80

2.4. Taurine counteracts excitotoxic upsurges by interacting with
GABAA and glycine receptors, thereby increasing the duration of
chloride conductance

Several lines of evidence indicate that taurine inhibits neuro-
transmission by binding to ionotropic GABAA and glycine recep-
tors; this has been effectively used for the treatment of Alzheimer’s
disease.22,81 Taurine conducts the flow of chloride not by increasing
the frequency of the opening of the chloride channels, but by
increasing the duration that the channel is open.82 Very few studies
have been conducted on the direct activation of taurine receptors.
Definitive identification of taurine receptors is still emerging.20,21

Further mechanistic studies are necessary to understand the
direct role of taurine receptors on propagating neurotransmission.
A summary schematic depicting the mode of action of taurine as
a neuroprotective agent is shown in Figure 1.
e sequence of events leading from the activation of taurine receptors to neuroprotection
ctivation of metabotropic taurine receptors (mTauR); (2) inhibition of the reverse mode
aurine-induced hyperpolarization; (4) inhibition of calpain resulting from the decrease
ax by the inhibition of calpain; (6) inhibition of the formation of the Bax homodimer,
o inhibitory G proteins, resulting in the inhibition of phospholipase C (PLC) activity and
the internal calcium storage pools, such as the ER, resulting in reduced ER stress and
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3. Mode of action of G-CSF in neuroprotection

G-CSF is a growth factor that is known to stimulate the proliferation
and survival of hematopoietic cells.83 G-CSF can penetrate the
blood-brain barrier and plays a prominent role in the CNS.35 G-CSF
and its receptors are expressed in neurons throughout the brain
and their expression is induced by ischemia, which is suggestive of
an autocrine protective signaling mechanism.35 An increasing
amount of evidence indicates that G-CSF is neuroprotective and
neuroregenerative both in vivo and in vitro. For example, G-CSF
protects against neurodegeneration in a number of neurological
disease models, such as Parkinson’s disease,32,84,85 Huntington’s
disease,37 and cerebral ischemia.86 The neuroprotective functions
of G-CSF are further discussed below.

3.1. Suppression of multiple apoptotic pathways

G-CSF has been consistently cited as an attenuator of apoptosis.
G-CSF is known to reduce the number of apoptotic cells identified
by cleaved caspase-3-immunoreactive neurons and terminal
deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-
positive cells in neonatal hypoxic-ischemic rats.87 G-CSF also
extends its protective effects by downregulating a number of anti-
apoptotic factors such as Bax, caspase-3, upregulated Bcl-2, Bcl-xL,
and Pim-1, thereby synergistically preventing the release of cyto-
chrome into the cytosol and translocating Bax to the
mitochondria,88e91 as shown in Figure 2.

In addition, G-CSF does not only modulate the intrinsic apoptosis
pathway, but also the extrinsic apoptosis pathway by mediating its
anti-apoptotic role through the tumor necrosis factor-related,
apoptosis-inducing ligand (TRAIL) pathway.33 Recombinant G-CSF
Figure 2 Proposed mode of action of the neuroprotective functions of G-CSF. G-CSF could
pathways: (1) activation of the STAT3 pathway results in translocation of STAT3 to the nucleu
the PI3 K/AKT pathways or (4) ERK1/2 pathway results in the inhibition of the pro-apoptotic
ASK-1 pathway, resulting in disinhibition or activation of the anti-apoptotic protein, Bcl-2,
reduces the number of TRAIL-positive neurons and protects
senescence-accelerated mice against memory impairment.33 Such
properties make G-CSF an attractive therapy for the treatment of
diseases characterizedbydementia. In retinal ganglion cells, the anti-
apoptotic properties of G-CSF have been attributed to the Phospha-
tidyl inositol 3-kinase (PI3)/AKT pathway and 6-hydroxydopamine
(6-OHDA)-induced toxicity via the ERK pathway.92,93 Recently, we
reported that G-CSF alone, or in combination with taurine, protects
glutamate-induced primary rat neuronal cultures by downregulating
the ER stressmarkers GRP78, CHOP, Bim, and caspase-12 in vitro.80 In
addition to its neuroprotective functions, G-CSF also exerts effects on
the neuroregenerative/stem cell mechanisms, as discussed in the
following section.

3.2. Activation of cell proliferation mechanisms that promote
neurogenesis

G-CSF stimulates the neural progenitor response in vivo and
markedly improves long-term behavioral outcomes after cortical
ischemia.35 Peripheral infusion of G-CSF enhances the recruitment of
progenitor cells from the lateral ventricle wall into ischemic areas of
the neocortex in rats.35 Furthermore, G-CSF is known to induce
neurogenesis by activating signal transducer and activator of
transcription 3 (STAT3), signal transducer and activator of
transcription 5 (STAT5), and vascular endothelial growth
factor (VEGF).87,94,95 In an in vivo 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) model of Parkinson’s disease, G-CSF
significantly increases the number of dopamine (DA) neurons and
the functions of the DA system, suggesting that G-CSF restores the
degenerated nervous system through both neuroprotective and
neurogenetic mechanisms.84
exert its neuroprotective functions through one or more of the following signaling
s and (2) the upregulation of the anti-apoptotic genes, Bcl-2 and Bcl-X; (3) activation of
protein, Bad; (5) activation of the PI3 K/AKT pathways inhibits the ER stress-mediated
and inactivation of the pro-apoptotic protein, BIM (see insert).
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3.3. Clinical applications of G-CSF

In our recent studies, we have observed a remarkable improvement
in neuronal functions, both in clinical cases and Parkinson’s disease
animal models that have been treated with G-CSF. Among the
clinical cases, a patient with end-stage corticobasal ganglionic
degeneration showed marked improvement after G-CSF treatment
based on the patient’s evaluation according to the Unified Parkin-
son’s Disease Rating System (UPDRS). Overall improvement was
66% across all four categories: 1) mentation, behavior, andmood; 2)
daily life activities; 3) motor skills; and 4) complications.85 These
results suggest that G-CSF may promote the regeneration of DA
neurons in the substantia nigra and their functional integration into
the nigrostriatal pathway. To extend this work, we conducted
laboratory tests using the MPTP mouse model of Parkinson’s
disease. Unlike other published studies where G-CSF was admin-
istered before MPTP treatment,32 in our study we opted for delayed
treatment with G-CSF until after degeneration of the DA neurons by
MPTP had been completed. We found that MPTP causes a marked
loss in DA neurons, and G-CSF treatment restores the functions
of the DA system, as indicated by increases in the number of
DA neurons, stimulation-induced DA release, restoration of the
nigrostriatal pathway, and improvement in locomotor activities, all
of which are suggestive that the observed restoration might be due
to differentiation of substantial nigra neuronal progenitor cells or
progenitor cells that invade the substantia nigra after G-CSF
application.84,85 In addition to PD, we also found that G-CSF
markedly reduces the size of brain infarctions that are induced by
middle cerebral artery occlusion stroke animal model. These find-
ings support the notion that G-CSF is a novel agent with both
neuroregenerative/stem cell and neuroprotective activities and
could be effective for the treatment of Parkinson’s disease, stroke,
and other degenerative brain disorders.
4. Conclusion

In the present review, we demonstrate that both taurine and G-CSF
are attractive therapeutic targets for the treatment of neurode-
generative diseases. Both taurine and G-CSF function by suppress-
ing apoptosis at multiple levels. The synergistic action of the
combination of taurine and G-CSF has been proven to be beneficial
for treating glutamate-induced neurotoxicity in primary rat
neuronal cultures.80 Because taurine is a natural amino acid and G-
CSF is approved by the Food and Drug Administration, these find-
ings could push forward the development of combinational
approaches that provide more effective therapies.
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